

AE Senior Thesis 2008

TRUMP TAJ MAHAL HOTEL
Atlantic City, New Jersey

Analysis and Design of a Steel Braced Frame Core

An Investigation of the Design of High Rise Steel Structures

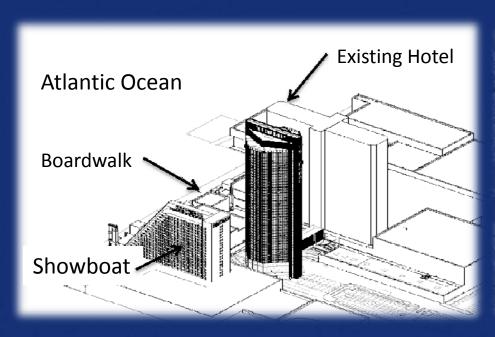
Stephen Reichwein Structural Emphasis

Presentation Outline

- Project Information
 - Existing Structural System
 - Problem Statement and Solution
 - Structural Redesign
 - Architectural Studies
 - Construction Studies
 - Conclusions

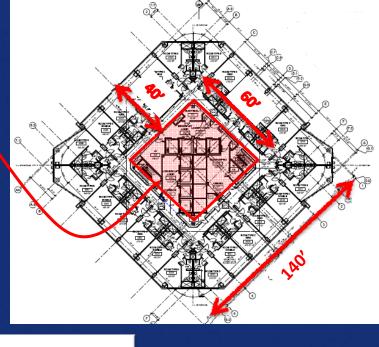
Project Information

General Information


- 40 Story Hotel Tower
- Expansion to Existing Hotel
- Project Cost = \$200 Million
- Project Size = 730,000 G.S.F
- Owner Trump Hotels and Casino Resorts
- Project Delivery Method Design Build
- Groundbreaking: July 2006
- Completion: August 2008

Project Information

Project Location



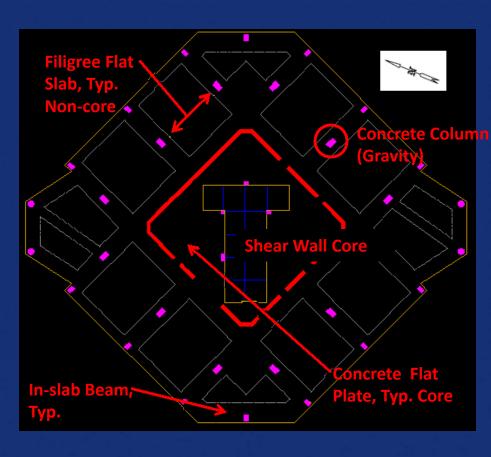
Project Information

Building Architecture

- Diamond Footprint
- Services in Central Core
- Reflective Glass Curtainwall (Shaft)
- Stainless Steel Capital
- Precast Concrete (Base)

Presentation Outline

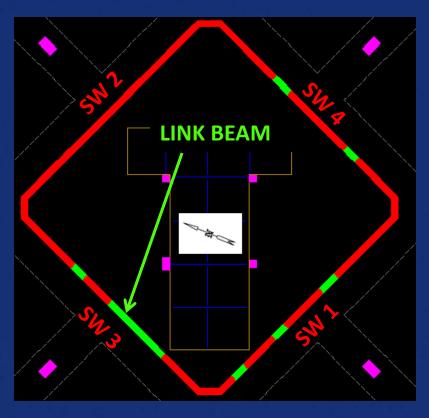
- Project Information
 - Existing Structural System
 - Problem Statement and Solution
 - Structural Redesign
 - Architectural Studies
 - Construction Studies
 - Conclusions



Existing Structural System

Gravity System

- Filigree Flat Plate (Non-core)
- Reinforced Flat Plate (Core)
- Concrete Columns (100% Gravity)



Existing Structural System

Lateral Force Resisting System

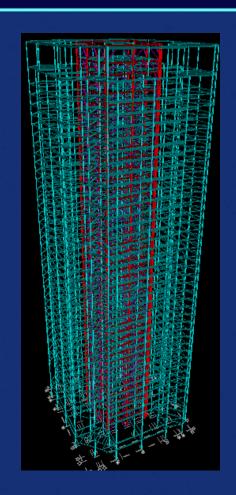
Reinforced Concrete Shear Wall Core

Levels	f'c	Thickness
1 thru 3	9000 <mark>psi</mark>	24"
4 thru 15	9000psi	16"
16 thru 22	7000 psi	16"
23 thru 41	500 0psi	16"

Presentation Outline

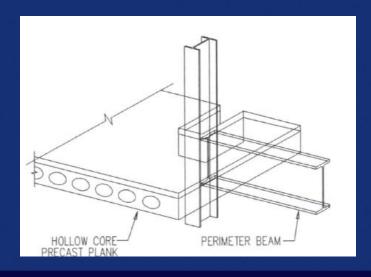
- Project Information
 - Existing Structural System
 - Problem Statement and Solution
 - Structural Redesign
 - Architectural Studies
 - Construction Studies
 - Conclusions

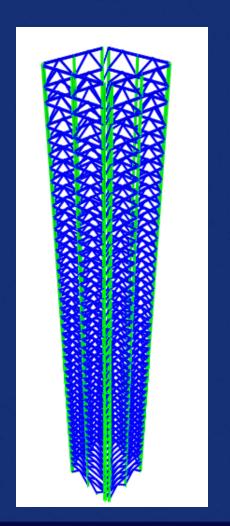
Problem Statement


- Key design consideration: opening the hotel as soon as possible
 - Erection of concrete system slow and labor intensive
- Swallower mat foundation will provide cost and schedule savings
 - Extremely heavy concrete core requires a 9'-0" thick mat foundation

Design Goals

- Reduce structure dead weight using an all steel system
 - Premium 1: 10" floor to floor height increase
 - Premium 2: Architectural Impacts
- Eliminate costly concrete construction with faster steel erection
- Utilize a "core only" lateral force resisting system
- Determine why a concrete framing system was chosen over a steel framing system?

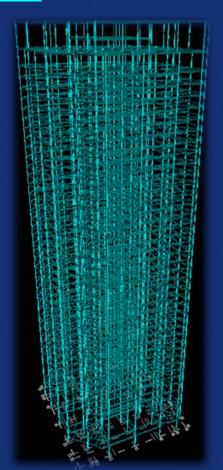


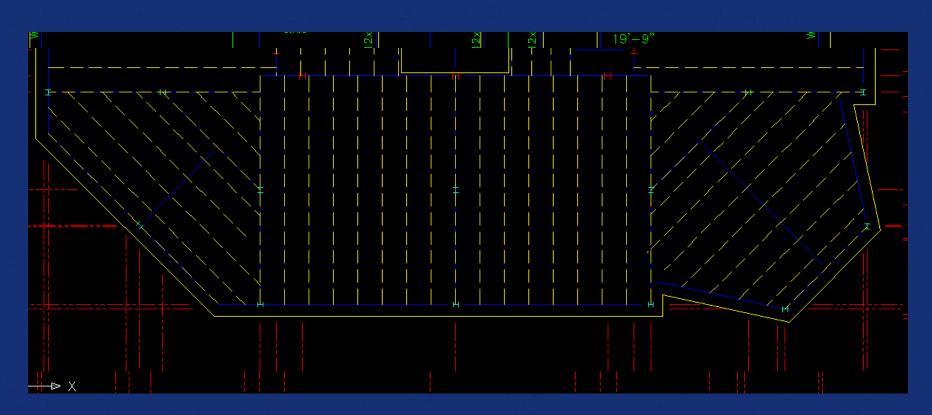

Trump Taj Mahal Hotel

Solution Overview

- Lateral System Redesign
 - Steel Braced Frame Core
- Gravity System Redesign
 - Steel Non-Composite Frame with Precast Concrete Planks

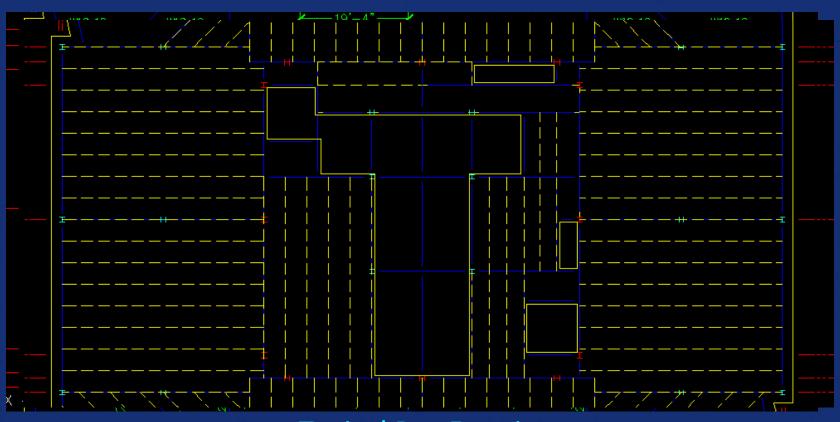
Presentation Outline


- Project Information
 - Existing Structural System
 - Problem Statement and Solution
 - Structural Redesign
 - Architectural Studies
 - Construction Studies
 - Conclusions


Non-Composite Steel Frame with Precast Planks

- Analysis and Design
 - RAM Steel LRFD
 - Typical Dead Load = 98 psf
 - Typical Live Load = 40 psf
- System Takeoff
 - Girders and Beams: 1000 tons
 - Gravity Columns: 900 tons
 - 10" Precast Planks with 2" Topping: 683,000 S.F.
 - Nitterhouse

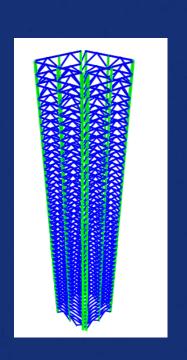
Non-Composite Steel Frame with Precast Planks

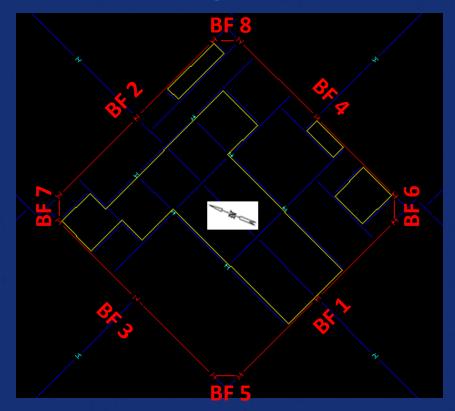


Typical Bay Framing

Stephen Reichwein - Structural Option AE Senior Thesis - 2008 TRUMP TAJ MAHAL HOTEL
Atlantic City, New Jersey

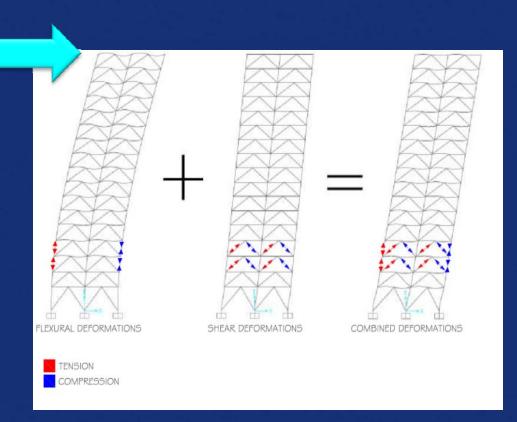
Non-Composite Steel Frame with Precast Planks




Typical Bay Framing

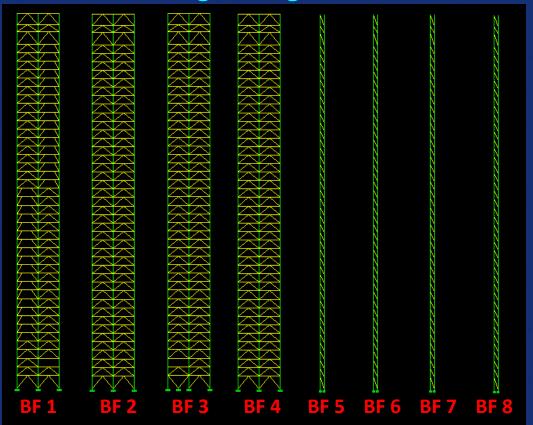
Steel Braced Frame Core

Redesigned Core



Wind tunnel loads provided by DFA

Steel Braced Frame Core


- Behavior
 - Cantilevered vertical truss
 - Columns resist moment with axial deformations
 - Braces resist shear
- Primary Drift Components
 - "Chord Drift" from axial shortening of columns
 - "Shear Racking" of braces
- Strength Design
 - Slenderness (KL/r)
 - H1-1a and H1-1b

Steel Braced Frame Core

Bracing Configurations

Frame	Direction	
1	E/W	
2	E/W	
3	N/S	
4	N/S	
5-8	Both	

BF 1 (E/W): Eccentric Braces 8'-0" Link

Steel Braced Frame Core

Classical Design Methods – Preliminary Analysis and Design

- Moment Area Method
- Classical Virtual Work

	Classical Virtual Work			Moment Area Method		
1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A _{col}	A _{brace}	Agirder	L	Ovt. Mom	A _{col}
Group 5	76.23	9.33	11.76	L	1542667.14	22.44
Group 4	178.99	11.95	15.05	L	3585799.97	68.58
Group 3	288.65	13.53	17.05	L	5985908.32	143.53
Group 2	380.55	14.39	18.13	l	8762778.83	252.78
Group 1	498.74	14.88	24.17		12955479.37	424.18

 $W14x808 (A_s = 237 in^2) << 424 in^2$

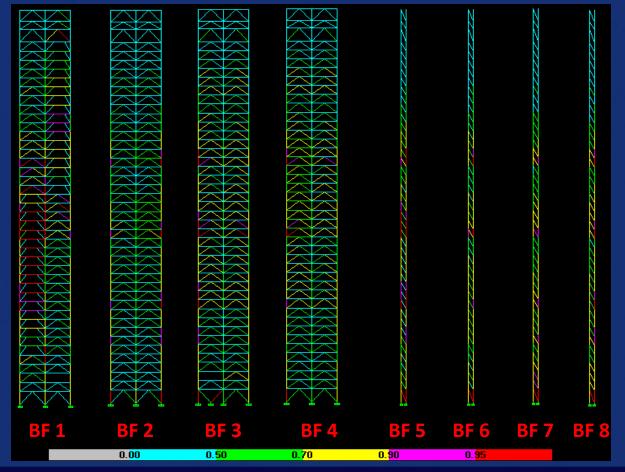
Built-up Sections Required

Steel Braced Frame Core

Braced Frame Schedule

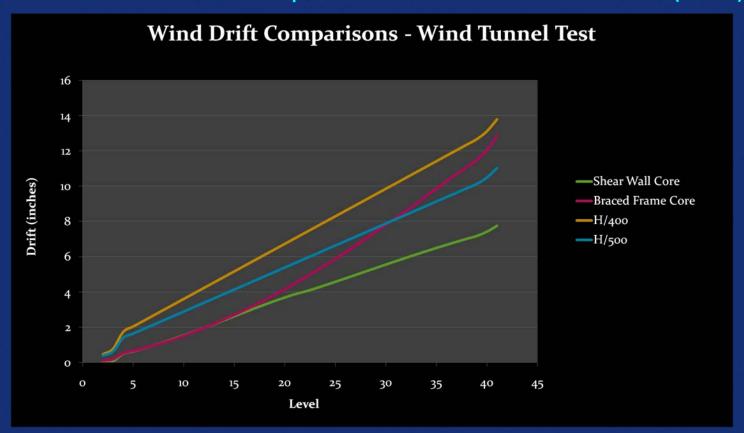
Concentrically Braced Frames (BF 1, 2, 3, 4)			
Levels	Column	Brace	Girder
1 - 4	1430plf Built-up	W12x210	W14x132
5 - 8	1113plf Built-up	W12x170	W14x132
9 - 16	910plf Built-up	W12x136	W14x109
17 - 24	W14x550	W12x106	W16x89
25 - 32	W14x311	W12x87	W16x77
33 - Roof	W14x257	W12x53	W16x77

Ec	Eccentrically Braced Frames (BF 1 Only)			
Levels	Column	Brace	Girder	
1 - 4	1430plf Built-up	W12x210	W14x145	
5 - 8	1113plf Built-up	W12x170	W14x145	
9 - 16	910plf Built-up	W12x136	W14x145	
17 - 24	W14x550	W12x106	W14x120	
25 - 32	W14x311	W12x87	W16x77	
33 - Roof	W14x257	W12x53	W16x77	


BF 5, 6, 7, 8			
Levels Brace			
1 - 16	2L8x8x1		
16 - Roof	2L6x6x1		

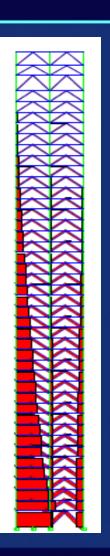
Steel Braced Frame Core

Strength Check


- H1-1a and H1-1b
- P-delta effects

Steel Braced Frame Core

Drift Results and Comparison – Wind Tunnel Loads (75%)



Steel Braced Frame Core

- Braced Frame Column Base Plate
 - A36 PL 65" x 55" x 10-1/2" with (32) 2-3/4" A449 **Grade 120 Anchor Bolts**
- Punching Shear
 - P_{...} = 15,910 kips

Stephen Reichwein - Structural Option

Mat Thickness Required = 110" ≈ 108"

Steel Braced Frame Core

Structural Dynamics – Fundamental Periods

- Translation X East/West
- Translation Y North/South
- Torsional Rotation about Z

Direction	Shear Wall Core		Braced Frame Core		
	Period (s)	Frequency (1/s)	Period (s)	Frequency (1/s)	
X (E/W)	3.13	0.32	3.78	0.26	
Y (N/S)	2.75	0.36	4.28	0.23	
Rz	1.77	0.56	2.9	0.34	

Steel Braced Frame Core

Parametric RMS Acceleration Study

Parametric RMS Acceleration

Table 5.

Traditional Motion Perception (Acceleration) Guidelines (Note 1)

10-year Mean Recurrence Interval

Concrete Shear Steel Braced Frame Core

Concrete shear wall core is within target range; however, the steel braced frame core is not!!!!

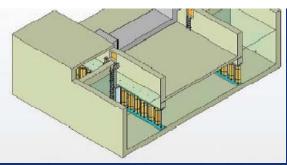
Commercial	15-27	3.75-6.75	4.00-7.20	4.29-7.71
	Target 21	Target 5.25	Target 5.60	Target 6.00
Residential	10-20	2.50-5.00	2.67-5.33	2.86-5.71
	Target 15	Target 3.75	Target 4.00	Target 4.29
Notation: T = period (secon f = frequency (he $g_p = \text{peak factor}$	ıds)		g	

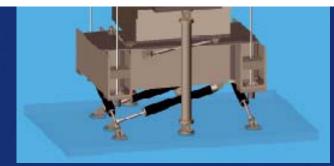
4.4 9.4

NOTE:

 RMS and peak accelerations listed in this table are the traditional "unofficial" standard applied in U.S. practice based on the author's experience.

TRUMP TAJ MAHAL HOTEL
Atlantic City, New Jersey



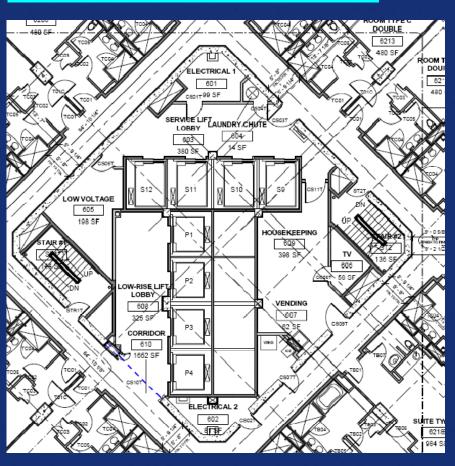

Steel Braced Frame Core

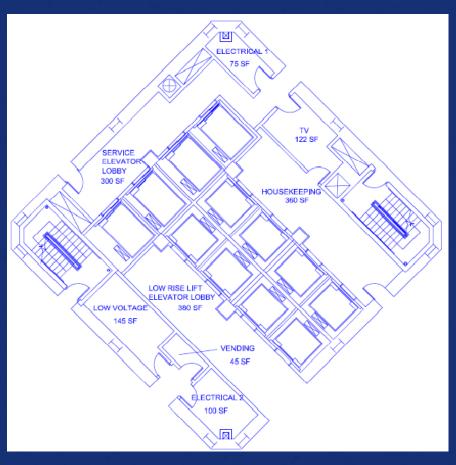
Solution to RMS Acceleration Issue

- Already sufficiently large braced frame members require supplemental mass and damping
- Building motion can be alleviated by additional mass and damping

Tuned mass dampers will add approximately \$2 to \$3 Million to overall project cost

Presentation Outline

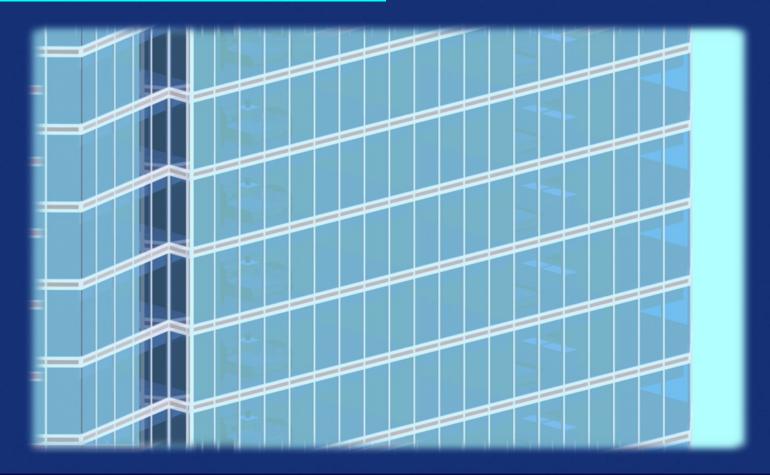

- Project Information
 - Existing Structural System
 - Problem Statement and Solution
 - Structural Redesign
 - Architectural Studies
 - Construction Studies
 - Conclusions



Architectural Studies

Redesigned Service Core

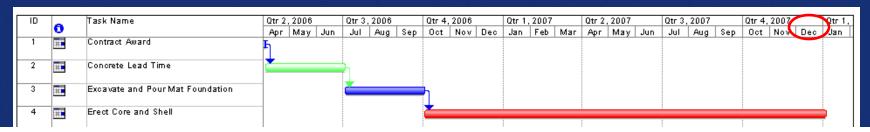
Architectural Studies

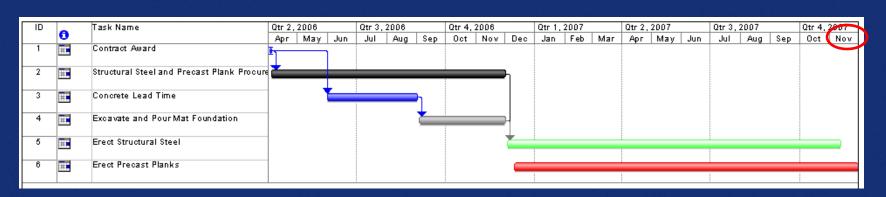

Interior Architectural Impacts

Architectural Studies

Exterior Architectural Impacts

Presentation Outline


- Project Information
 - Existing Structural System
 - Problem Statement and Solution
 - Structural Redesign
 - Architectural Studies
 - Construction Studies
 - Conclusions



Construction Management Studies

Scheduling Comparison

Steel structure will top out a month earlier than concrete

Steel Structural System

Construction Management Studies

Cost Comparison

Line Item	Concrete Option	Steel Option
Foundation Cost	\$3.3 million	\$3.3 million
Superstructure Cost	\$41.5 million	\$39.2 million
Miscellaneous Cost		\$5.9 million
Tuned Mass Damper Cost		\$2 to \$3 million
Misc. Structural Steel	\$3.5 million	\$3.5 million
Stair Cost	\$1.4 million	\$1.4 million
Total Cost	\$49.7 million	\$55.3 to \$56.3 million

Presentation Outline

- Project Information
 - Existing Structural System
 - Problem Statement and Solution
 - Structural Redesign
 - Architectural Studies
 - Construction Studies
 - Conclusions

Conclusions

- Long lead time for steel and precast planks offers little schedule advantage (approximately 1 month less than concrete)
- Braced frame core performs adequately against strength and drift
- Lighter steel frame still requires 9'-0" thick mat foundation
- Building accelerations may be perceived by occupants because braced frame core is too flexible
- Steel structure will cost approximately \$5.5 million more than concrete structure if mass damper is found to be required

Recommendation

- Because it is stiffer, the concrete shear wall core limits the dynamic movement of the building better than the steel braced frame core
- Filigree flat plate system erects much faster than a typical concrete floor system, giving the steel little schedule advantage
- With supplemental damping taken into consideration, the concrete system will cost less than steel structure

Acknowledgements

I would like to thank those individuals who have either indirectly or directly helped in making this project possible, taking time out of their busy schedules to answer my questions....

Trump Entertainment Resorts

Joseph S. Polisano

The Harman Group, Inc.

Malcolm Bland Jason Squitierre

Bovis Lend Lease

Bill Lankford John Adams

KPFF

Jeff Albert

Friedmutter Group

John Koga

AE Faculty Advisor

Dr. Andres Lepage

AE Faculty

Professor M. Kevin Parfitt **Professor Robert Holland**

Structural and CM Mentors

Charlie Carter

Benjamin M. Kovach

AE Students

Sam Jannotti **Jason Sambolt**

Friends and Family

Parents

Brothers and Sisters

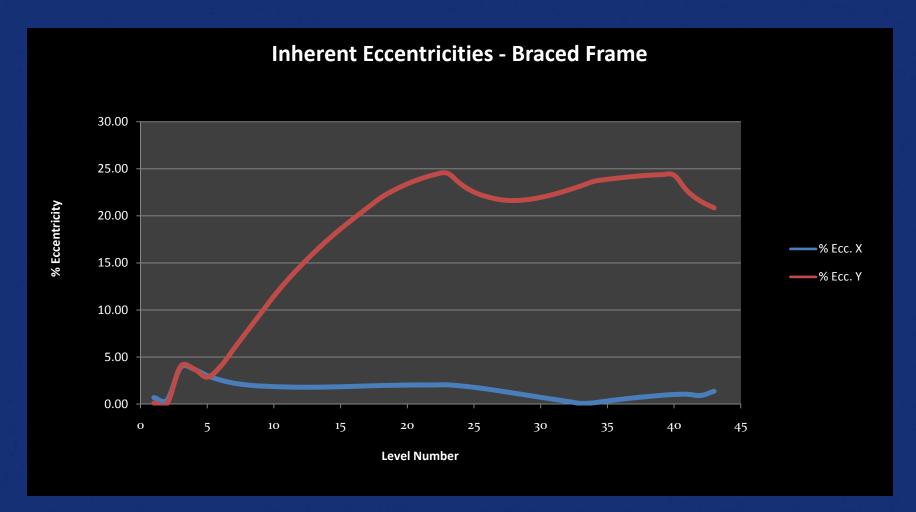
Penn State AE Class of 2008

Stephen Reichwein - Structural Option

Trump Taj Mahal Hotel

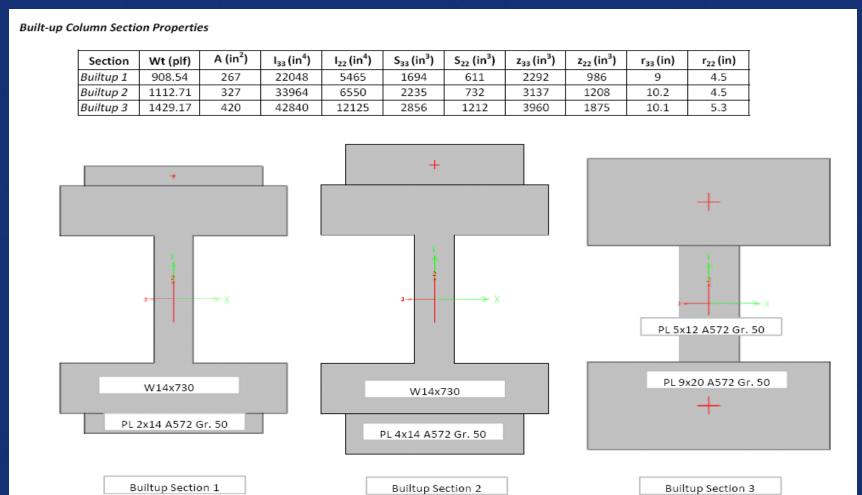
Questions

Wind Tunnel Test


Floor	Height	Fx	Fy	Mz
	ft	kip	kip	kip-ft x10 ³
Roof	437.22	139.0	191.4	1.71
40	414.72	169.3	233.3	2.66
39	399.72	103.2	142.1	1.66
38	387.72	96.3	132.7	1.58
37	378.14	100.2	138.0	1.67
36	368.56	97.6	134.5	1.63
35	358.98	95.1	131.0	1.59
34	349.40	92.5	127.5	1.54
33	339.82	90.0	124.0	1.50
32	330.24	87.4	120.5	1.46
31	320.66	84.9	116.9	1.42
30	311.08	82.3	113.4	1.37
29	301.50	79.9	110.1	1.33
28	291.92	77.4	106.6	1.29
27	282.34	74.8	103.1	1.25
26	272.76	72.3	99.6	1.21
25	263.18	69.7	96.0	1.16
24	253.60	65.8	90.6	1.12
23	244.02	63.3	87.2	1.08
22	234.44	60.8	83.7	1.03

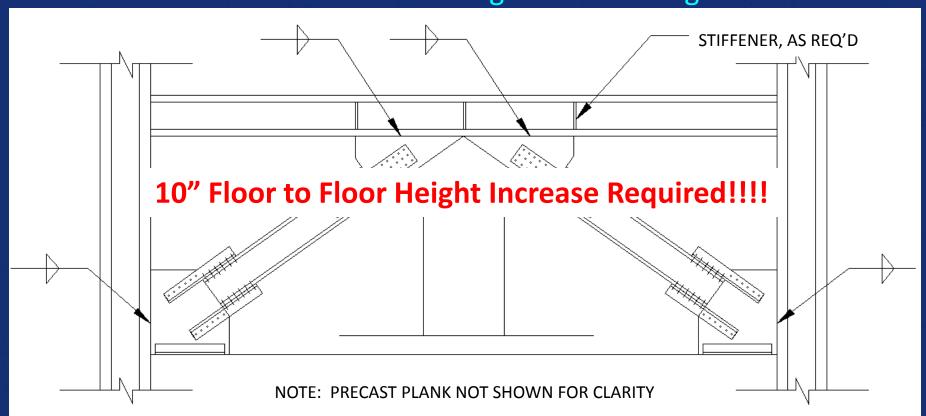
Floor	Height	Fx	Fy	Mz
1 1001	ft	kip	kip	kip-ft x10 ³
21	224.86	58.3	80.3	0.99
20	215.28	55.8	76.9	0.95
19	205.70	53.3	73.4	0.91
18	196.12	50.9	70.1	0.87
17	186.54	48.4	66.7	0.82
16	176.96	45.9	63.3	0.78
15	167.38	43.4	59.8	0.74
14	157.80	40.9	56.4	0.70
13	148.22	38.4	53.0	0.65
12	138.64	35.9	49.5	0.61
11	129.06	33.4	46.1	0.57
10	119.48	31.0	42.6	0.53
9	109.90	28.5	39.2	0.48
8	100.32	26.0	35.8	0.44
7	90.74	23.6	32.5	0.40
6	81.16	21.1	29.1	0.36
5	71.58	18.6	25.6	0.32
4	62.00	29.8	41.1	0.39
3	26.00	9.2	12.6	0.15
2	16.00	6.4	8.8	0.10
	Σ	2500.7	3444.9	41.0

- Day 1944	4 10 M		
Load Case	Y-Axis (%)	X-Axis (%)	Z-Axis (%)
1	+100	+50	+50
2	+100	+50	-50
3	+100	-50	+50
4	+100	-50	-50
5	-100	+50	+50
6	-100	+50	-50
7	-100	-50	+50
8	-100	-50	-50
9	+65	+100	+60
10	+65	+100	-60
11	-65	+100	+60
12	-65	+100	-60
13	+65	-100	+60
14	+65	-100	-60
15	-65	-100	+60
16	-65	-100	-60
17	+65	+50	+60
18	+65	-50	+60
19	-65	+50	-60
20	-65	-50	-60



Inherent Eccentricity

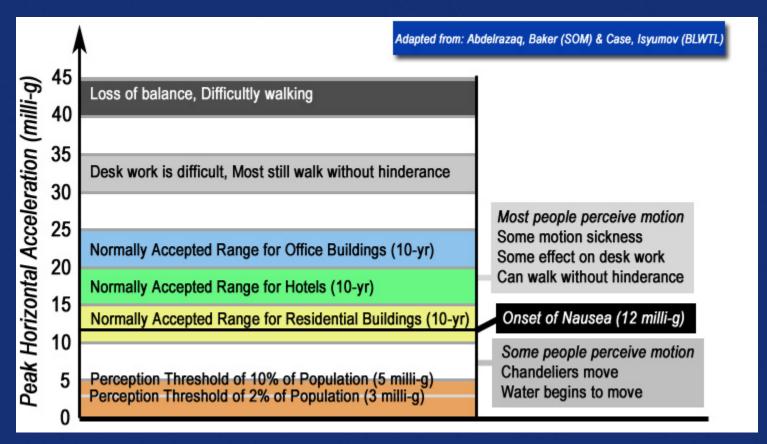
Built-up Column Sections



Structural Redesign

Steel Braced Frame Core

Connection Design and Detailing


25% Wind Force Reduction

interval winds that strength design wind loads are based upon are special events. In lieu of using the precision of a map with ten-year wind speed isobars, the authors recommend using 75 percent of 50-year wind pressure as a reasonable (plus or minus 5 percent) approximation of the ten-year wind pressures. The Commentary to Appendix B of ASCE 7-02 recommends 70 percent.

From AISC Design Guide 3: Serviceability Design Considerations for Steel Buildings

Peak Acceleration

....Can only truly be determined utilizing wind tunnel studies

Structural Redesign

Steel Braced Frame Core

Braced Frame Schedule

Concentrically Braced Frames (BF 1, 2, 3, 4)			
Levels	Column	Brace	Girder
1 - 4	1430plf Built-up	W12x210	W14x132
5 - 8	1113plf Built-up	W12x170	W14x132
9 - 16	910plf Built-up	W12x136	W14x109
17 - 24	W14x550	W12x106	W16x89
25 - 32	W14x311	W12x87	W16x77
33 - Roof	W14x257	W12x53	W16x77

_				
Eccentrically Braced Frames (BF 1 Only)				
Levels	Column	Brace	Girder	
1 - 4	1430plf Built-up	W12x210	W14x145	
5 - 8	1113plf Built-up	W12x170	W14x145	
9 - 16	910plf Built-up	W12x136	W14x145	
17 - 24	W14x550	W12x106	W14x120	
25 - 32	W14x311	W12x87	W16x77	
33 - Roof	W14x257	W12x53	W16x77	

BF 5, 6, 7, 8		
Levels	Brace	
1 - 16	2L8x8x1	
16 - Roof	2L6x6x1	

Steel Tonnage

Steel Cost Breakdown

